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Abstract—The viscosity of a fluid in a Couette flow system can not be measured isothermally because
dissipation generates heat which has to be removed by conduction to the walls. The present paper investi-
gates the development of the temperature field from its isothermal initial state to the final equilibrium
condition. This knowledge is necessary for a judgment whether the viscosity can be measured at a time at
which the viscosity field is practically developed whereas the heat generated by dissipation is still negligible.
The developing temperature and velocity fields are calculated for a Newtonian fluid with a temperature
dependent viscosity assuming a locally and timewise constant wall temperature. A parameter (85r)
characterizing the development of the temperature field determines how rapidly the temperature field
develops and whether an equilibrium condition exists at all.

NOMENCLATURE Indices
a, thermal diffusivity [cm?/s]; % initial state;
b,(Fo), T,(Fo), Fouriet-coefficients, see equa- “, equilibrium state;
tions (23) and (29); W, at wall surface;
c, heat capacity [kcal/kggrd]; Br, Brinkmann number,
h, slot width [cm]; Tl MoA Ty
k, dimensionless coordinate, y/h;  Fo, Fourier number, ta/h?;
n. viscosity [kp . S/sz]; Pr, Prandtl number, n/ap.
T, temperature [grd];
t, time [s]; INTRODUCTION
U, unsteady part of temperature Ty MEASUREMENT of the viscosity of a fluid by a
field, 6 — 6,5 o device modeling Couette flow is made difficult
vV, VCIOCIFY in x direction [cm/s]; by the fact that it is impossible to maintain iso-
X, Vs coordinates [cm]; i thermal conditions. The dissipation in the fluid
B, temperature coefficient (8 > 0 develops heat which has to be conducted to the
for liquids); o walls. As a consequence a temperature field
4, thermal conductivity [kcal/ exists in the fluid at steady cperation.
cmsgrd}; This temperature field does not develop
6 dimensionless  temperature, jnstantaneously. Its establishment requires a
L+ B(T — T/ Tp; certain time the magnitude of which depends on
ps density [kg/em®]; the fluid involved and on the experimental
T shear in x direction on a plane  conditions. Bartenew and Kusnetschikowa [1]
y = constant [kp/cm’]. measured the required starting time for various
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kinds of Butadienkautschuk and found values
of order of magnitude of minutes. (The width
of the fluid layer was 1 and 3 mm and the shear
velocity between 0-01 and 26:5s™ 1)

A measurement of the viscosity under iso-
thermal conditions must, therefore, be per-
formed at a time after the starting of the device
which is long enough for the velocity field to
develop fully but which is sufficiently short so
that the heat developed by dissipation is still
negligible. It will be demonstrated that for a
Newtonian fluid the Prandt] number is an
important criterion establishing the condition
under which the kinematic starting process is
finished before the thermal development begins.

Krekel (8) measured the shear stress and the
temperature of the fluid during the starting of a
Couette system, using silicone oil as a model
fluid. For operation with constant velocity he
found that with increasing values of §-Br the
fluid temperature increased more rapidly, which
in turn caused a more rapid and greater decrease
of the shear stress. Krekel calculated the tempera-
ture and the velocity field for the operation with
constant shear stress and used this solution as an
approximation for the operation with constant
velocity. The shear dependence of the viscosity
was taken into account by the sinh-formula and
the temperature dependence was taken to be
linear.

Powell and Middleman [2] investigated the
thermal development for a Newtonian fluid with
constant viscosity with the goal to establish the
time during which the uncooled walls of the
Couette system remain practically isothermal
and the time required for the development of
a constant temperature field in the walls. The
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FiG. 1, Plane Couette flow.
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restriction to a temperature independent
viscosity had the consequence that the times
obtained were a function of geometry and
thermal conductivity only and that the Brink-
mann number had no influence.

In this paper, the development of the tem-
perature field is calculated for plane shear flow
of a Newtonian fluid of variable viscosity with
the assumption that the walls remain at constant
temperature.

System of equations

The fluid considered in this paper is assumed
to be incompressible and Newtonian and to
have constant thermal conductivity and
diffusivity. The temperature dependence of the
viscosity is approximated by a linear function.
The solution of the velocity field has therefore
to be restricted to temperature ranges for which
this approximation applies.

The Couette flow is generated between two
plane walls (Fig. 1). Dynamic equilibrium
requires

dv(y,t) _ dt(y, 1) .

) @

where the velocity has only a component in x

direction. T denotes the shear stress acting in
x direction on planes y = const.

The relationship between shear stress and

viscosity is
ooy, t)
wy, 1) = n(T) By @
The viscosity in this equation depends in-
directly on the y coordinate.
The conservation of energy requires

OT(y, 1) _ 0*T(y, t) ov(y, t)

A -
Yot oy* dy

pc + 1y, 1) €)
The boundary and initial conditions for the

temperature field are

isothermal wall:
T(y=0,0)=Ty=h1t)=
uniform initial temperature:
T(y,t =0)=T, =Ty

Tw )
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The temperature dependence of the viscosity
will be expressed by the equation

11 (T - T0)>

—=-~<1+B T )

7 N

in which 5, denotes the viscosity at the initial
temperature T;. The equations (2), (3) and (5)
can be combined to the expression

1800, _ 3%600.1) , 0.
a o 0y Mo

0y, 1)

with

T-T)

0=1+p—
]

©)

Non-dimensionalization

The dimensionless parameter characterizing
the dynamic process, equation (1), is the product
of Fourier and Prandtl numbers

n
Fo.Pr = ;73. @)
The development of the temperature field,
equation (3), is characterized by the dimension-
less parameter

ta
212

Br = t“j h ) )
no-To

Fo and Fo . Pr are actually dimensionless times.
The Brinkmann number Br is the ratio of the
heat generated by dissipation to the heat
conducted away. In addition a dimensionless
coordinate

k = y/h (10)
will be introduced. With these notations the
temperature field can be expressed in the
following form

1205
86(k, Fo) _ 8%6(k, Fo) = t*(k, Fo)
oFo oK = PBrok Fo)
0<k<1,0<Fo (i1)

b.c.: 6(0,Fo) = 8(1,Fo)=1, 0 < Fo
ic: 8k,0) =1, 0<k<gl

Equation (11) can be solved exactly when the
ratio is constant. This holds for a starting
process with constant shear. For a starting
process with constant relative velocity

v(l, Fo) = V,

the magnitude of z(k, Fo)/t,, will be estimated
in the following paragraphs.

Kinematic starting without heat dissipation

The calculation of the temperature field will
be based on the assumption that the kinematic
starting process is practically finished before
the heat dissipation has generated an amount
of heat which is not negligible. The shear stress
in the field is then uniform

1(k, Fo) — t(Fo).

The kinematic starting process will be calculated
at first in order to justify this assumption:
At the beginning of the experiment, the plates

l
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F16G. 2. Velocity field during kinematic starting with constant
velocity. The parameter Fo . Pr is a dimensionless time.
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F1G. 3. Equilibrium temperature field with . Br as parameter.

and the fluid are at rest. At the time t =0
(or Fo = 0) the upper plate starts moving with a
constant velocity V. In the course of time the
momentum “diffuses” from the moving plate
towards the plate at rest. The liquid layers in
this way accelerate towards the equilibriom
velocity (Fig. 2). The velocity field is obtained
as a solution of the Navier-Stokes equation,
equation (1) with (2). (For the calculation see

(3D

o

v(k, Fo) k4t 212(—1)’l

| A n

n=1

exp(—Fo . Prn*n?)sin (nnk).  (12)
At a time which corresponds to Fo. Pr = 1, the
shear stress has approached the equilibrium
shear stress to 99-99 per cent. This means for
the assumption above that the thermal starting
process at

Fo = !
T Pr
should not yet have started. It also indicates that
the calculation in the next paragraph applies to
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FiG. 4. Equilibrium velocity field with §. Br as parameter.
(a) Velocity referred to V.

liquids with large Prandtl numbers only. From
Fig. 9, which will be discussed later on, one can
determine when this condition applies.

An analogous computation for the kinematic
starting for constant shear stress condition on
the moving plate leads to the same criterion.
The velocity field for this case is shown by
McKelvey [4].
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FIG. 4. (b) Velocity referred to V.
Starting condition for the thermal development o0
. . . . . — =0, T = 1, = const.
The kinematic starting process is considered dFo

as finished. This means that an established
velocity field is assumed

ok, 0)

=k 13
7 (13)
and that the shear stress is
Vo
= 14
To =MNo7- h (14)

The viscosity is constant since the field is still
isothermal.

T-T,=0. (15)

Equilibrium temperature field and the correspond-
ing stress and velocity field

The heat generated by dissipation causes the
fluid temperature to increase. Heat is removed
by conduction to the walls which are kept at the
original temperature. Under steady condition
the temperature field is such that all of the heat
generated by dissipation is removed by conduc-
tion. This equilibrium temperature field has been
calculated by various authors e.g. [5-10]. For
plane Couette flow, the temperature field is
obtained from the energy equation, equation
(11), with the conditions

— ¢ ‘i sin ./BBrk + cos ./BBrk.

Gw(k)= sin ./BBr

The temperature and velocity fields for steady
condition are presented in Figs. 3 and 4.

The ratio of the relative velocity for equili-
brium condition to that at initiation of the
movement is for the starting process with
constant shear stress given by the following
equation

o(l, Fo» ) V, 2—2cos./BBr

(1,00  V, /BBrsin. /BBr

For the start with constant relative velocity,
the ratio of the shear stresses is

wFo—» ) Ty _ \/BBrsin /BBr
10) 1, 2-—2cos/BBr’

The solution for the temperature field can be
composed from the equilibrium solution and
from a transitional contribution

0(k, Fo) = 6, (k) + U(k, Fo).

.(17)

(18)

(19)

Introducing this equation into the original
differential equation (11) results in the following
equation for the transitional contribution
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dU(k, Fo) _ ¢*U(k, Fo) N t%(Fo) BBr
0Fo ~  0k* 72

a0

2
Uk, Fo) + ( i if o) _ 1) BBro,, (k)

o

0<k<1, 0<Fo, (20)

b.c.: U(0, Fo) = U(1, Fo) = 0, 0 < Fo,
ic.: Uk,0) =1—0,(k), 0<kgl.

Temperature field for operation with constant
shear stress
The experiments with constant shear stress
require

T =1y = 1T, = const.

Equation (20) is being reduced to a linear differ-
ential equation with constant coefficients which
is solvable by a Fourier analysis.
The temperature field is
T(k,Fo)— T, 11— cos\/BBr .
= BB
Sin BBr sin ./BBrk

) p

n

K

+ ces \/BBrk— 1 +Z b,(Fo).

1
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FiG. 5. Temperature field during thermal starting with
constant shear (for §.Br = 5).

yh

0,5

0,01

0,05
0.l

0,5

o] I

viyt)

%

FiG. 6. Velocity field during thermal starting with constant shear (for . Br = 5). The

velocity is normalized with the starting velocity V.
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From the temperature field the velocity field
is calculated by integration

k
(Fo)

otk Fo) _ .[ a(Fo, k) dk

Vo To

(1 — cos \/m)(l - cos,/ﬂBrk)
\/ﬂBr sin \/BBr

(1 — cos nnk)
n’n?

sin ./ BBrk
JBBr

22)

b,(Fo).
n=1

The Fourier coefficients b, are obtained from
the starting condition

2.BBr
7.2

—(—1)"]133',——

x exp [Fo(BBr — n*z?)].  (23)

The temperature field (multiplied by the tem-
perature coefficient ) is presented in Fig. 5 for
the parameter value SBr = 5 and for various
Fourier numbers. The velocity fields normalized
by the starting velocity ¥, and by the equilibrium
velocity V, respectively are presented in Figs. 6
and 7.

b, = [1
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FiG. 7. Velocity field during thermal starting with constant
shear (for B.Br = 5). The velocity is normalized with the
equilibrium velocity V.
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FIG. 8. Velocity field during thermal starting with constant
relative velocity V.

Temperature field for operation with constant
velocity

The initial and the final state of the tempera-
ture field is already known, equations (15) and
(16). The temperature field in the neighbour-
hood of the equilibrium state is approximated
by equation (17). Integration results in the
velocity field (Fig. 8)

v(k, Fo) _ uFo)
Vo - To
(1 — cos/BBr)(1 — cos./BBrk)
BBrsin /SBr

— cos (mtk)

+ F”B_' Zw — o e

The local shear stress is described by the equa-
tion

©(Fo) _ [2—2005\/%

To \/BBrsin,/BBr

J]”_ (25)
7[

Z b,(Fo).
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We are, however, especially interested in the
deviation from the isothermal state. Therefore,
an approximate solution must be found for
small Fourier numbers. For this purpose, the
shear stress is assumed constant in consecutive

H. H. WINTER

©(Fo) |2 — 2cos /BBr
To JVBBrsin /fBr

o0

. . . . . - (-1 -t
intervals. A first approximation is obtained + Z T.(Fo) (1—2(2—)"~>] . (28)
from equations (18) and (25). For the following .. n
- —_—
1
2
‘lg © AN R
8
BBr=9
= zé)“' |t)*3 Kl)‘z fo“ 10°
Fo
FIG. 9. Shear stress during thermal starting with constant relative velocity V;,. The parameter is
B. Br.
iteration steps the value of the shear stress is The Fourier coefficients are
tgken from equation (28). Approximate so%u- 28Br[1 — (~1)]
tions for the temperature field, the velocity T, (Fo) = FoVz21 2B 73"
field, and the shear stress field are s [e(Fo)/ T‘”;I f; ronm
T-T, 11 BB+ {T e [Fo (T :2 g - "an)]
_ °=—[———_ €08 rsin./ﬂBrk T *
T BV sin /pBr {[+*(Fo)/z3] — 1} n*xn?
+ 33 SN2
BBr — n*n

sin (nnk)
nn ]’ 26

+ cos /BBrk —1 +i T,(Fo)

n=1

v(k, Fo) _ tFo)
A

[(1 —cos/BBr)(1 —cos . /BBrk)
J/ BBrsin . /BBr

sin,/fBrk i 1 — cos (nnk)

To

n=1

The starting process is presented in Fig. 8 for
the parameter value BBr = 5. The deviation from
isothermal condition is determined by the
deviation of the shear stress ratio from the
initial value 1 (Fig. 9).

For large values of the parameter BBr the
iteration converges at small values of the
Fourier number only. By means of an under-
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relaxation procedure it was possible to extend
the range where the iteration converges up
to BBr = 9.

Range of validity

The solution described by equations (21)+28)
is valid for 0 < . Br < n°.

At BBr = 0 the temperature remains at the
original level. The time at which the thermal
process starts decreases with increasing value
of fBr. The solution presented here is therefore
applicable for fluids with corresponding high
Prandtl numbers only. For BBr > n?, the
temperature increases continuously with in-
creasing time to higher and higher values. The
heat generated by dissipation cannot be con-
ducted to the walls rapidly enough.
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CHAMP INSTATIONNAIRE DE TEMPERATURE DANS L’ECOULEMENT PLAN DE COUETTE

Résumé—La viscosité d’un fluide dans un systéme d’écoulement de Couette ne peut étre mesurée iso-
thermiquement parce que la dissipation créée de la chaleur qui doit étre enlevée par conduction aux parois.
Cet article étudie le développement du champ de température 4 partir de P'état initial jusqu’a I’équilibre
final. Cette connaissance est nécessaire pour savoir si la viscosité peut étre mesurée & un instant ol le
champ dynamique est pratiquement développé tandis que la chaleur créée par dissipation est pratiquement
négligeable. Les champs thermiques et dynamiques sont calculés pour un fluide newtonien dont la viscosité
dépend de la température en supposant une température pariétale constante dans le temps et sur la surface.
Un paramétre qui caractérise le développement du champ de temperature fixe la vitesse avec laquelle le
champ de température se développement et les conditions d’équilibre,

DAS INSTATIONARE TEMPERATURFELD IN EBENER SCHLEPPSTROMUNG
Zusammenfassung—Die Viskositét einer Fliissigkeit kann in einem Couettesystem nicht unter isothermen
Bedingungen gemessen werden, da durch Dissipation Wirme entsteht, die zu den Winden hin abgeleitet
werden muss. Diese Arbeit untersucht den Aufbau des Temperaturfeldes vom isothermen Ausgangs- zum
Gleichgewichtszustand. Die Kenntnis dariiber ist zur Beurteilung notwendig, ob die Viskositit zu ¢inem
Zeitpunkt gemessen werden kann, zu dem das Geschwindigkeitsfeld zwar ausgebildet, die Warme-
entwicklung durch Dissipation jedoch noch vernachlassigbar ist. Die sich aufbauenden Temperatur-
und Geschwindigkeitsfelder wurden fiir eine Newtonsche Fliissigkeit mit temperaturabhiingiger Viskositat
fiir isotherme Winde berechnet. Ein Parameter (§ Br), mit dem das sich entwickelnde Temperaturfeld
charakterisiert wird, bestimmt, wie schnell sich das Temperaturfeld aufbaut und ob iberhaupt eine

Gleichgewichtsbedingung existiert.
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HECTAUMOHAPHOE TEMIIEPATYPHOE IIOJIE B IIJIOCKOM
TEYHEHUHN KVYIOTTA

AHHOTAIMA—BA3ZKOCTL MUAKOCTU TPH KYSTTOBCKOM TeYEHUU HEJIb3f M3MEPUTHL N30TEepMH-
YecKM, T.K. BCIEICTBUE OUCCHIALMN TeHEPHPYETCHA Teljo, KOTOpOe YHAJfAeTCA 3a Cuer
TeILIONPOBOAHOCTH Yepe3 CTeHKN. B ganHo#t padoTe UCCIETYHTCA PA3BATHE TEMIEPATYPHOTO
IOJIA OT MB0TEPMHUUECKOTO HAYAIBHOTO 0 KUHEYHOTO PABHOBECHOT'O COCTOAHMUA. OTH CBeLEHUA
HEOGXOMUMEL ;iJIA TOro, YTOOH MOHATH, MOMHO JI U3MEPATh BABKOCTH TOrRA, KOTHA IOJE
BA3BKOCTHM y#e INPAKTHYECKM DPA3BUTO, a TeIIo, BhZeddeMoe 3a CUET JACCHNALIMM, eLle
npeneGpe:xumMo Maj0. PasBUBAIOUINECA IOJA TeMNEpaTypel M CKOPOCTM DPaCcCYMTHIBAIOTCA
LA HbIOTOHOBCKOM KMJIKOCTH B IPERNOJI0MEHHM JIOKAJIbHOH 3aBUCUMOCTH BASKOCTH OT
TeMIepaTypu M MOCTOAHCTBA TeMIeparyphl creHku. Ilapamerp (8 Br), xapakTepuaylomuii
Pa3BUTHE TEMIIEPATYPHOrO I0JiA, ONpeflejAeT CKOPOCTh PAsBUTHA TeMIIePATYPHOTO IOJIA I
cymecTByer ji BoofIle ycaoBHE PaBHOBECHH .



