
hr. .I. Heat Mass Twmsfer. Vol. 14. pp. 1203-1212. Pergamon Press 1971. Printed in Great Britam 

THE UNSTEADY TEMPERATURE FIELD IN 

PLANE COUE’M’E FLOW 

H. H. WINTER 

Institut filr Kunststofftechnologie, University of Stuttgart, Stuttgart, Germany 

(Received 15 September 1970) 

Abstract-The viscosity of a fluid in a Couette flow system can not be measured isothermally because 
dissipation generates heat which has to be removed by conduction to the walls. The present paper investi- 
gates the development of the temperature field from its isothermal initial state to the final equilibrium 
condition. This knowledge is necessary for a judgment whether the viscosity can be measured at a time at 
which the viscosity lield is practically developed whereas the heat generated by dissipation is still negligible. 
The developing temperature and velocity fields are calculated for a Newtonian fluid with a temperature 
dependent viscosity assuming a locally and timewise constant wall temperature. A parameter (per) 
characterizing the development of the temperature field determines how rapidly the temperature field 

develops and whether an equilibrium condition exists at all. 
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NOMENCLATURE 

thermal diffusivity [cm’/s]; 
Fourier-coefficients, see equa- 
tions (23) and (29); 
heat capacity [kcal/kggrd] ; 
slot width [cm]; 
dimensionless coordinate, y/h; 
viscosity [kp . s/cm’]; 
temperature [grd]; 
time [s]; 
unsteady part of temperature 
field, 8 - 8, ; 
velocity in x direction [cm/s]; 
coordinates [cm] ; 
temperature coefficient (B > 0 
for liquids); 
thermal conductivity [kcal/ 
cmsgrd] ; 
dimensionless temperature, 
1 + B(T - Q/T,; 
density [kg/cm3]; 
shear in x direction on a plane 
y = constant [kp/cm*]. 

Indices 
0 
> 

03 
3 

W, 
Br, 

Fo, 
Pr, 

initial state; 
equilibrium state; 
at wall surface; 
Brinkmann number, 
rZ,h*/rl&,; 
Fourier number, ta/h*; 
Prandtl number, q/ap. 

INTRODUCTION 

THE MEASUREME~ of the viscosity of a fluid by a 
device modeling Couette flow is made difficult 
by the fact that it is impossible to maintain iso- 
thermal conditions. The dissipation in the fluid 
develops heat which has to be conducted to the 
walls. As a consequence a temperature field 
exists in the fluid at steady cperation. 

This temperature field does not develop 
instantaneously. Its establishment requires a 
certain time the magnitude of which depends on 
the fluid involved and on the experimental 
conditions. Bartenew and Kusnetschikowa [l] 
measured the required starting time for various 
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kinds of Butadienkautschuk and found values 
of order of magnitude of minutes. (The width 
of the fluid layer was 1 and 3 mm and the shear 
velocity between O-01 and 26.5 s- ‘.) 

A measurement of the viscosity under iso- 
thermal conditions must, therefore, be per- 
formed at a time after the starting of the device 
which is long enough for the velocity field to 
develop fully but which is sufficiently short so 
that the heat developed by dissipation is still 
negligible. It will be demonstrated that for a 
Newtonian fluid the Prandtl number is an 
important criterion establishing the condition 
under which the kinematic starting process is 
finished before the thermal development begins. 

Krekel (8) measured the shear stress and the 
temperature of the fluid during the starting of a 
Couette system, using silicone oil as a model 
fluid. For operation with constant velocity he 
found that with increasing values of J? a Br the 
fluid temperature increased more rapidly, which 
in turn caused a more rapid and greater decrease 
of the shear stress. Krekel calculated the tempera- 
ture and the velocity field for the operation with 
constant shear stress and used this solution as an 
approximation for the operation with constant 
velocity. The shear dependence of the viscosity 
was taken into account by the sinh-formula and 
the temperature dependence was taken to be 
linear. 

Powell and Middleman [2] investigated the 
thermal development for a Newtonian fluid with 
constant viscosity with the goal to establish the 
time during which the uncooled walls of the 
Couette system remain practically isothermal 
and the time required for the development of 
a constant temperature field in the walls. The 

va 
T 

Y 

L- x 

restriction to a temperature independent 
viscosity had the consequence that the times 
obtained were a function of geometry and 
thermal conductivity only and that the Brink- 
mann number had no influence. 

In this paper, the development of the tem- 
perature field is calculated for plane shear flow 
of a Newtonian fluid of variable viscosity with 
the assumption that the walls remain at constant 
temperature. 

System of equations 
The fluid considered in this paper is assumed 

to be incompressible and Newtonian and to 
have constant thermal conductivity and 
diffusivity. The temperature dependence of the 
viscosity is approximated by a linear function. 
The solution of the velocity field has therefore 
to be restricted to temperature ranges for which 
this approximation applies. 

The Couette flow is generated between two 
plane walls (Fig. 1). Dynamic equilibrium 
requires 

WY, t) WY, t) 
p,,=-, 

8Y 
(1) 

where the velocity has only a component in x 
direction. z denotes the shear stress acting in 
x direction on planes y = const. 

The relationship between shear stress 
viscosity is 

WY, t) 
$Y, t) = v(T)-. 

dY 
The viscosity in this equation depends 
directly on the y coordinate. 

The conservation of energy requires 

~VY, r) a2T(y, t) ’ 
pc, at = IT 

dY 
+ z(y, t)?. 

The boundary and initial conditions for 
temperature field are 

isothermal wall : 
T(y = 0, t) = T(y = h, t) = T, 

uniform initial temperature : 

and 

(2) 

in- 

(3) 

the 

(4) 

FIG. 1. Plane Couette flow. T(y, t = 0) = To = T, 
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The temperature dependence of the viscosity 
will be expressed by the equation 

1 1 -_=- 
V Ire ( 

1 +$T- %) 

To > 
(5) 

in which q. denotes the viscosity at the initial 
temperature To. The equations (2), (3) and (5) 
can be combined to the expression 

with 

Non-dimensionalization 
The dimensionless parameter characterizing 

the dynamic process, equation (l), is the product 
of Fourier and Prandtl numbers 

Fo.Pr=3 
ph2’ 

The development of the temperature field, 
equation (3), is characterized by the dimension- 
less parameter 

Fo = ; 

Fo and Fo . Pr are actually dimensionless times. 
The Brinkmann number Br is the ratio of the 
heat generated by dissipation to the heat 
conducted away. In addition a dimensionless 
coordinate 

k = y/h (10) 

will be introduced. With these notations the 
temperature field can be expressed in the 
following form 

80(k, Fo) a20(k, Fo) 

~Fo = Jk2 
+ T2(k, J-4 

7 BBre (k, Fo), 
m 

0 < k < 1, 0 < Fo, (11) 

bc.: 0(0, Fo) = ($1, Fo) = 1, 0 < FCJ 
i.c.: 8(k,O) = 1, 0 < k < 1. 

Equation (11) can be solved exactly when the 
ratio is constant. This holds for a starting 
process with constant shear. For a starting 
process with constant relative velocity 

~(1, Fo) = V, 

the magnitude of z(k, Fo)/z, will be estimated 
in the following para~aphs. 

Kinematic starting without heat dissipation 
The calculation of the temperature field will 

be based on the assumption that the kinematic 
starting process is practically finished before 
the heat dissipation has generated an mount 
of heat which is not negligible. The shear stress 
in the field is then uniform 

z(ks Fo) -, z(Fo). 

The kinematic starting process will be calculated 
at first in order to justify this assumption: 

At the beginning of the experiment, the plates 

0.6 
c 

k 
0.4 

FIG. 2. Velocity field during kinematic starting with constant 
velocity. The parameter Fo Pr is a dimensionless time. 
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FIG. 3. Equilibrium temperature field with fl. Br as parameter. 

and the fluid are at rest. At the time t = 0 
(or 8’0 = 0) the upper plate starts moving with a 
constant velocity V,. In the course of time the 
momentum “diffuses” from the moving plate 
towards the plate at rest. The liquid layers in 
this way accelerate towards the equilibrium 
velocity (Fig. 2). The velocity field is obtained 
as a solution of the Navier-Stokes equation, 
equation (1) with (2). (For the calculation see 

[O. 

n= 1 

exp (- Fo . Pm2n2) sin (nnk). (12) 

At a time which corresponds to Fo . Pr = 1, the 
shear stress has approached the equilibrium 
shear stress to 99.99 per cent. This means for 
the assumption above that the thermal starting 
process at 

Fo =A 

should not yet have started. It also indicates that 
the calculation in the next paragraph applies to 

.u 
0 05 

“fY) 

“m 
FIG. 4. Equilibrium velocity field with p Br as parameter. 

(a) Velocity referred to V, 

liquids with large Prandtl numbers only. From 
Fig. 9, which will be discussed later on, one can 
determine when this condition applies. 

An analogous computation for the kinematic 
starting for constant shear stress condition on 
the moving plate leads to the same criterion. 
The velocity field for this case is shown by 
McKelvey [4]. 
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v(u) 
“0 

FIG. 4. (b) Velocity referred to V,. 

Starting condition for the thermal development 
The kinematic starting process is considered 

as finished. This means that an established 
velocity field is assumed 

and that the shear stress is 

TO 
b 

= ?Ok. 

(13) 

(14) 

The viscosity is constant since the field is still 
isothermal. 

T - T, = 0. (15) 

Equilibrium temperaturefield and the correspond- 
ing stress and velocity field 

The heat generated by dissipation causes the 
fluid temperature to increase. Heat is removed 
by conduction to the walls which are kept at the 
original temperature. Under steady condition 
the temperature field is such that all of the heat 
generated by dissipation is removed by conduc- 
tion. This equilibrium temperature field has been 
calculated by various authors e.g. [S-lo]. For 
plane Couette flow, the temperature field is 
obtained from the energy equation, equation 
(1 l), with the conditions 

ae -= 
8Fo 

0, z = 2, = const. 

e,(k) = 
1 - COSJjiJE 

sin JBB; 
sin ,/j!&k + cos mk. 

The temperature and velocity fields for steady 
condition are presented in Figs. 3 and 4. 

The ratio of the relative velocity for equili- 
brium condition to that at initiation of the 
movement is for the starting process with 
constant shear stress given by the following 
equation 

~(1, Fo --t 00) V, 2-2cos JsBr 

u(l, 0) =Y,=JBBrsinJBBr.(*7) 

For the start with constant relative velocity, 
the ratio of the shear stresses is 

z(Fo + 0~)) z, @iG sin JjBG 

z(O) =z,=2-2cosJBB;’ 
(18) 

The solution for the temperature field can be 
composed from the equilibrium solution and 
from a transitional contribution 

8(k, Fo) = Boo (k) + U(k, 8.0). (1% 

Introducing this equation into the original 
differential equation (11) results in the following 
equation for the transitional contribution 
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fxJ(k, Fo) d2U(k, Fo) + rZ(Fo) /3Br 

%Fo = ak2 z”, 

U(k,Fo) + (9 - +?rB,(k). 
co 

0 < k < 1, 0 < Fo, (20) 

b.c.: U(0, Fo) = U(1, Fo) = 0, 0 < Fo, 
i.c.: U(k, 0) = 1 - 8,(k), O<k<l. 

Temperature field for operation with constant 
shear stress 

The experiments with constant shear stress 
require 

z = z0 = 7, = const. 

Equation (20) is being reduced to a linear differ- 
ential equation with constant coefficients which 
is solvable by a Fourier analysis. 
The temperature field is 

T(k, Fo) - T, 1 1 - cos,lgBr 

T, =j sin /IfI I 
sin mk 

00 

+ ces ,@%k- 1 + c sin (nxk) 
b,(Fo) .p 1 . 

n7t (21) 
n=l 

I 

c 
\ 
\ 0.5 

0 I 2 

T-r, 

’ G 

FIG. 5. Temperature field during thermal starting with 
constant shear (for fi. Br = 5). 

I- 
0.01 0,05 

I 
0 I 

vo,,t) 

"0 

FIG. 6. Velocity field during thermal starting with constant shear (for p Br = 5). The 
velocity is normalized with the starting velocity V,. 
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From the temperature field 
is calculated by integration 

the velocity field 

4k F4 z(Fo) ’ 

v, s 
B(Fo, k) dk 

TO 
0 

= (1 - cosJBBr)(l - COSJBBrk) + sir@Ek 

JBBrsin JBB; Ji= 
‘w 

+ c b,,(Fo) .(l -;;;Fk). (22) 

n=l 

The Fourier coefficients b, are obtained from 
the starting condition 

b, = [l - C-4”] ,f”;:nz 

2 
4 

x exp [Fo(BBr - n%*)]. (23) 

The temperature field (multiplied by the tem- 
perature coefficient /3) is presented in Fig. 5 for 
the parameter value /3Br = 5 and for various 
Fourier numbers. The velocity fields normalized 
by the starting velocity V, and by the equilibrium 
velocity V, respectively are presented in Figs. 6 
and 7. 

v(y,t) 

v, 
FIG. 8. Velocity field during thermal starting with constant 

relative velocity V,. 

Temperature field for operation with constant 
velocity 

The initial and the final state of the tempera- 
ture field is already known, equations (15) and 
(16). The temperature field in the neighbour- 
hood of the equilibrium state is approximated 
by equation (17). Integration results in the 
velocity field (Fig. 8) 

r(k, Fo) r(Fo) 
V, =- 70 

x (1 - cos @) (1 - cos ,@%k) 

JBBrsin JBBr 

sin lJ% 

+* c b,(Fo) 
1 - cos (nzk) 

n2n2 1 . (24) 
n=T 

The local shear stress is described by the equa- 
tion 

FIG. 7. Velocity field during thermal starting with constant 
shear (for B. Br = 5). The velocity is normalized with the 

equilibrium velocity V,. 

co 

c 1 - (-1r -1 
UFO). n2n2 . 

1 (25) 
n= . . . 2 
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We are, however, especially interested in the r(Fo) 2 
deviation from the isothermal state. Therefore, 
an approximate solution must be found for 

7 = 
[ 

- 2 cos $iE 

JXr sin $GG 

small Fourier numbers. For this purpose, the 
shear stress is assumed constant in consecutive 
intervals. A first approximation is obtained 
from equations (18) and (25). For the following 

+ 2 T,(Fo)f ;$“)I-‘. (28) 
” 

FIG. 9. Shear stress during thermal starting with constant relative velocity V,. The parameter is 

iteration steps the value of the shear stress is 
taken from equation (28). Approximate solu- 
tions for the temperature field, the velocity 
field, and the shear stress field are 

T - To 1 ~=- 1 - cos&?Br 

To P sin ,fjiGG 
sin $Ek 

+ cos &@ik - 1 + 
sin (mk) 

T,(F4------ 3 

n7c 1 (26) lt=f 
4% Fo) z(Fo) 

v, =- 

(1 - cos JpBr) ( 1 - cos ,,/$Ek) 

TO JaBy sin ,@I% 

1 - cos (nzk) 
n2n2 1 , (27) 

The Fourier coefficients are 

2BBr[l - (- lr] 

T,(Fo) = [T(Fo)/T$J /II& - r&c2 

{ yexp[Fo(3$?Br - n2x2)] 

+ {[T~(Fo)/T~] - l> n2x2 

/lBr - n2x2 1 ’ 
(29) 

The starting process is presented in Fig. 8 for 
the parameter value /3Br = 5. The deviation from 
isothermal condition is determined by the 
deviation of the shear stress ratio from the 
initial value 1 (Fig. 9). 

For large values of the parameter /?Br the 
iteration converges at small values of the 
Fourier number only. By means of an under- 
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relaxation procedure it was possible to extend REFERENCES 
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CHAMP 1NSTATIONNAIRE DE TEMPERATURE DANS L’ECOULEMENT PLAN DE COUETTE 

R&urn&La viscosite d’un fluide dans un systeme d’ecoulement de Couette ne peut &tre mesuree iso- 
thermiquement parce que la dissipation cr&te de la chaleur qui doit etre enlevee par conduction aux parois. 
Cet article btudie Ie d~veloppement du champ de temperature & partir de I&at initial jusqu’a l’equilibre 
final. Cette connaissance est necessaire pour savoir si la viscositt petit &re mesun% B un instant oh le 
champ dynamique est pratiquement developpe tandis que la chaleur crt%e par dissipation est pratiquement 
ntgligeable. Les champs thermiques et dynamiques sont calculb pour un fluide newtonien dont la viscosite 
depend de la temperature en supposant une temperature parietale constante dam le temps et sur la surface. 
Un parametre qui caracterise le devcloppement du champ de temperature fixe la vitesse avec laquelle le 

champ de temperature se diveloppement et les conditions d’equilibre. 

DAS INSTATION~RE TEMPERATURFELD IN EBENER SCHLEPPSTR~MUNG 
Zusammenfawmg-Die Viskositiit einer Fiiissigkeit kann in einem Couettesystem nicht unter isothermen 
Bedingungen gemessen werden, da durch Dissipation W&me entsteht, die zu den WHnden hin abgeleitet 
werden muss. Diese Arbeit untersucht den Aufbau des Temperaturfeldes vom isothermen Ausgangs- zum 
Gleichgewichtszustand. Die Kenntnis dariiber ist zur Beurteilung notwendig ob die Viskositiit zu einem 
Zeitpunkt gemessen werden kann, zu dem das Geschwindigkeitsfeld zwar ausgebildet, die Wirme- 
entwicklung durch Dissipation jedoch no& vernachhlssigbar ist. Die sich aufbauenden Temperatur- 
und G~chwindi~eitsfelder wurden fur eine Newtonsche Fltissigkeit mit tem~raturabh~n~ger Viskositlt 
fiir isotherme Wiinde berechnet. Em Parameter (/? Br), mit dem das sich entwickelnde Temperaturfeld 
charakterisiert wird, bestimmt, wie schnell sich das Temperaturfeld aufbaut und ob iiberhaupt eine 

Gleichgewichtsbedingung existiert. 
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HECTAUBOHAPHOE TEMnEPATYPHOE IlOJIE H nJlOCKOM 
TEqEHMM ECY3TTA 

hIHOTa~Ilst-Brl3KOCTb xcHfiKOCTL% npH Ky3TTOBCKOM Te'IeIIMhI HeJIb% B3MepMTb CI3OTepME 

'IeCKII, T.K. Bcne~cTshie ~wmma~en reHepEipyeTcK Temo, KoTopoe yaancIeTcK 3a cveT 

TenJIOnpOBO~HOCTM qepe3 CTeHKA. R AaIiHOti pa6OTe MCCJIe~yKTCFI p33BHTHe TeMnepaTypHOrO 

nO~~OTM30Te~~ME1~eCKOr0Ha~aJIbHOrO~OKiOHeYHOrOpaBHOBeCHOrOCOCTORHMR.~TRCBe~eH~~ 

He06XOAHMbI &IFI TOrO, qTO6bI nOHRTb, MOmHO JIA I43MepRTb BRBKOCTB TOrna, KOrAa nOJIe 

BR3KOCTH yxte ItpaKTlFIeCKM pa3BclT0, a TeIIJIO, BbIaemeMoe aa weT ~wminaqm, eqe 

npeHe6pemLwO Mano. PaaBmaIonwecH noj151 TeMnepaTypbI cf CKOpOCTH p3CC'IHTbIBalOTCH 

EJIR HbIOTOHOBCKOfi ?K:BAKOCTLI B IIpe~nOJlOHieIIIlM JIOKaJIbHOfi 3aBMCMMOCTGi BRBKOCTIl OT 

TeMnepaTypbI w nocToRHcTBa TehinepaTypbI cTeHKH. napaMeTp (6 Br), xapaKTepw3yIoIwli 

pa3BnTae TehfnepaTypHoro noes, 0npeAenneT cKopocTb pa3BHTHR TeMnepaTypHoro nonfl II 

CyqeCTByeT JIM Boo6we yCJIOB&ie paBHOBeCI'If1. 


